Early Access: The AI Agents API is in early access. Request access at agents@stateset.com

AI Agents API: Autonomous Commerce Infrastructure

πŸ€– Overview

StateSet’s AI Agents API enables you to deploy autonomous agents that can execute transactions, manage inventory, negotiate deals, and handle complex commerce operations 24/7. Built with native stablecoin integration and advanced safety controls.

Autonomous Execution

Agents operate independently within defined parameters

Built-in Safety

Multi-level controls prevent runaway spending

Real-time Learning

Agents improve performance through ML optimization

πŸš€ Quick Start

1

Deploy Your First Agent

import { StateSet } from '@stateset/sdk';

const stateset = new StateSet({ apiKey: 'sk_test_...' });

// Deploy a procurement agent
const agent = await stateset.agents.create({
  name: 'ProcurementBot-01',
  type: 'procurement',
  capabilities: ['negotiate', 'purchase', 'track'],
  limits: {
    daily_spend: '10000.00',
    per_transaction: '1000.00',
    requires_approval_above: '5000.00'
  }
});

console.log(`Agent deployed: ${agent.id}`);
2

Set Agent Parameters

// Configure agent behavior
await stateset.agents.configure(agent.id, {
  procurement_rules: {
    preferred_suppliers: ['supplier_123', 'supplier_456'],
    max_price_variance: 0.05, // 5% above market
    delivery_requirements: '3_days',
    quality_threshold: 0.95
  },
  negotiation_strategy: 'balanced', // aggressive, balanced, conservative
  learning_enabled: true
});
3

Monitor Agent Activity

// Real-time agent monitoring
const activity = await stateset.agents.activity(agent.id, {
  timeframe: '24h'
});

console.log(`Transactions: ${activity.transaction_count}`);
console.log(`Total spent: ${activity.total_spent}`);
console.log(`Savings achieved: ${activity.savings}`);

πŸ“Š Agent Types

Automated Purchasing & Negotiation

Procurement agents handle supplier relationships, negotiate prices, and execute purchases based on inventory levels and demand forecasts.
const procurementAgent = await stateset.agents.create({
  type: 'procurement',
  name: 'SupplyChainOptimizer',
  capabilities: [
    'supplier_discovery',
    'price_negotiation',
    'order_placement',
    'delivery_tracking'
  ],
  config: {
    inventory_triggers: {
      reorder_point: 100,
      optimal_quantity: 500,
      safety_stock: 50
    },
    supplier_preferences: {
      min_rating: 4.5,
      max_delivery_days: 5,
      payment_terms: ['NET_30', 'NET_60']
    }
  }
});
Key Features:
  • Automatic reordering based on inventory levels
  • Multi-supplier price comparison
  • Dynamic negotiation based on order volume
  • Quality and delivery performance tracking

πŸ” Safety & Controls

Multi-Level Security Framework

πŸ“‘ Agent Communication

Inter-Agent Protocols

// Enable agent-to-agent negotiation
const negotiation = await stateset.agents.negotiate({
  buyer_agent: 'agent_buyer_123',
  seller_agent: 'agent_seller_456',
  item: {
    sku: 'WIDGET-001',
    quantity: 1000,
    target_price: '10.00'
  },
  parameters: {
    max_rounds: 10,
    timeout: '5_minutes',
    binding_agreement: true
  }
});

// Monitor negotiation progress
negotiation.on('round_complete', (round) => {
  console.log(`Round ${round.number}: Buyer ${round.buyer_offer}, Seller ${round.seller_offer}`);
});

negotiation.on('agreement_reached', (deal) => {
  console.log(`Deal closed at ${deal.price} for ${deal.quantity} units`);
});

Human-Agent Collaboration

// Set up human oversight
await stateset.agents.setOversight(agent.id, {
  notification_channels: {
    email: ['ops@company.com'],
    slack: '#agent-alerts',
    sms: ['+1234567890']
  },
  
  escalation_triggers: [
    'unusual_price_variance',
    'new_supplier_request',
    'large_order_placement',
    'repeated_failures'
  ],
  
  human_intervention_points: {
    pre_execution: ['orders_above_5000'],
    post_execution: ['all_transactions'],
    on_error: ['payment_failures', 'delivery_issues']
  }
});

πŸ“Š Analytics & Performance

Real-Time Metrics

// Get comprehensive agent analytics
const analytics = await stateset.agents.analytics(agent.id, {
  period: '30_days',
  metrics: [
    'transaction_volume',
    'success_rate',
    'average_savings',
    'response_time',
    'learning_progress'
  ]
});

// Response
{
  "agent_id": "agent_123",
  "period": "30_days",
  "performance": {
    "transactions": 1543,
    "success_rate": 0.97,
    "total_volume": "543,234.56",
    "average_transaction": "352.15",
    "savings_achieved": "32,445.23",
    "savings_percentage": 0.06
  },
  "behavioral_insights": {
    "preferred_suppliers": ["supp_123", "supp_456"],
    "peak_activity_hours": [9, 10, 14, 15],
    "negotiation_success_rate": 0.78,
    "average_negotiation_rounds": 3.4
  },
  "learning_metrics": {
    "model_accuracy": 0.92,
    "prediction_confidence": 0.88,
    "adaptation_rate": 0.15,
    "knowledge_base_size": 15420
  }
}

Custom Reporting

// Create custom agent reports
const report = await stateset.agents.generateReport({
  agent_ids: ['agent_123', 'agent_456'],
  report_type: 'comparative_analysis',
  metrics: {
    financial: ['total_spend', 'roi', 'cost_savings'],
    operational: ['response_time', 'accuracy', 'throughput'],
    strategic: ['supplier_diversity', 'innovation_score']
  },
  format: 'pdf',
  schedule: 'weekly'
});

πŸ§ͺ Testing & Simulation

Sandbox Environment

// Test agent behavior in sandbox
const simulation = await stateset.agents.simulate({
  agent_id: agent.id,
  scenario: 'market_volatility',
  parameters: {
    price_fluctuation: 0.20,
    supply_disruption: 0.10,
    demand_spike: 1.50
  },
  duration: '7_days'
});

// Monitor simulation results
simulation.on('day_complete', (day) => {
  console.log(`Day ${day.number}: Performance ${day.performance_score}`);
});

🚨 Error Handling

try {
  const result = await agent.execute(transaction);
} catch (error) {
  switch(error.code) {
    case 'LIMIT_EXCEEDED':
      // Handle spending limit
      await notifyFinanceTeam(error);
      break;
    
    case 'UNAUTHORIZED_ACTION':
      // Handle permission violation
      await logSecurityEvent(error);
      break;
    
    case 'LEARNING_FAILURE':
      // Handle ML model issues
      await fallbackToRules(transaction);
      break;
    
    default:
      // Generic error handling
      await agent.reportError(error);
  }
}

πŸ”— Integrations

ERP Systems

Direct integration with SAP, Oracle, Microsoft Dynamics

ML Platforms

TensorFlow, PyTorch, and Hugging Face model support

Communication

Slack, Teams, Email, and SMS notifications

Analytics

Export to Tableau, PowerBI, and custom dashboards

πŸ“š Resources