Autonomous Agent Architecture: Self-Governing Digital Entities
StateSetβs Autonomous Agent Architecture enables the creation of fully self-governing digital entities that can own assets, execute transactions, make decisions, and interact with the broader digital economy through native USDC wallets and the MCP protocol.π§ Agent Core Architecture
Agent Runtime System
Agent State Machine
Copy
Ask AI
// Core agent state management
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct AgentState {
// Identity and configuration
pub id: AgentId,
pub did: String,
pub agent_type: AgentType,
pub capabilities: Vec<Capability>,
// Financial state
pub wallet: WalletState,
pub treasury: TreasuryState,
pub spending_history: Vec<Transaction>,
// Operational state
pub tasks: VecDeque<Task>,
pub goals: Vec<Goal>,
pub memory: AgentMemory,
pub context: ExecutionContext,
// Network state
pub connections: HashMap<String, ConnectionState>,
pub reputation: ReputationScore,
pub performance_metrics: PerformanceMetrics,
// Security state
pub permissions: PermissionSet,
pub audit_trail: Vec<AuditEvent>,
pub risk_assessment: RiskAssessment,
}
impl AgentState {
pub fn new(config: AgentConfig) -> Self {
Self {
id: AgentId::generate(),
did: format!("did:stateset:agent:{}", Uuid::new_v4()),
agent_type: config.agent_type,
capabilities: config.capabilities,
wallet: WalletState::new(config.initial_balance),
treasury: TreasuryState::new(),
spending_history: Vec::new(),
tasks: VecDeque::new(),
goals: config.initial_goals,
memory: AgentMemory::new(),
context: ExecutionContext::default(),
connections: HashMap::new(),
reputation: ReputationScore::new(),
performance_metrics: PerformanceMetrics::new(),
permissions: config.permissions,
audit_trail: Vec::new(),
risk_assessment: RiskAssessment::new(),
}
}
pub async fn execute_cycle(&mut self) -> Result<ExecutionResult> {
// 1. Perception: Gather information
let perception = self.perceive_environment().await?;
// 2. Cognition: Process and decide
let decisions = self.make_decisions(perception).await?;
// 3. Action: Execute decisions
let actions = self.execute_actions(decisions).await?;
// 4. Learning: Update state based on results
self.learn_from_results(actions).await?;
Ok(ExecutionResult { actions })
}
}
Cognitive Architecture
Copy
Ask AI
// Agent decision-making system
pub struct CognitiveEngine {
reasoning_engine: ReasoningEngine,
learning_system: LearningSystem,
goal_planner: GoalPlanner,
memory_manager: MemoryManager,
}
impl CognitiveEngine {
pub async fn make_decision(
&self,
context: &ExecutionContext,
goals: &[Goal],
constraints: &[Constraint],
) -> Result<Decision> {
// Multi-step reasoning process
let options = self.generate_options(context, goals).await?;
let filtered_options = self.apply_constraints(options, constraints)?;
let evaluated_options = self.evaluate_options(filtered_options).await?;
let best_option = self.select_best_option(evaluated_options)?;
// Create decision with rationale
Ok(Decision {
action: best_option.action,
confidence: best_option.confidence,
rationale: best_option.reasoning,
risk_assessment: best_option.risks,
expected_outcome: best_option.expected_outcome,
})
}
async fn generate_options(
&self,
context: &ExecutionContext,
goals: &[Goal],
) -> Result<Vec<ActionOption>> {
let mut options = Vec::new();
// Generate options for each goal
for goal in goals {
let goal_options = match goal.goal_type {
GoalType::Financial => self.generate_financial_options(context, goal).await?,
GoalType::Operational => self.generate_operational_options(context, goal).await?,
GoalType::Strategic => self.generate_strategic_options(context, goal).await?,
};
options.extend(goal_options);
}
Ok(options)
}
}
π° Native USDC Wallet System
Wallet Architecture
Copy
Ask AI
// Native USDC wallet for autonomous agents
pub struct AgentWallet {
address: String,
private_key: SecretKey,
balance: Balance,
transaction_history: Vec<Transaction>,
spending_limits: SpendingLimits,
multi_sig_config: Option<MultiSigConfig>,
treasury_strategy: TreasuryStrategy,
}
impl AgentWallet {
pub async fn new(config: WalletConfig) -> Result<Self> {
let (private_key, public_key) = generate_keypair();
let address = derive_address(&public_key);
Ok(Self {
address,
private_key,
balance: Balance::new(),
transaction_history: Vec::new(),
spending_limits: config.spending_limits,
multi_sig_config: config.multi_sig,
treasury_strategy: config.treasury_strategy,
})
}
pub async fn execute_payment(
&mut self,
recipient: &str,
amount: &str,
memo: Option<String>,
) -> Result<TransactionResult> {
// Pre-transaction validation
self.validate_payment(recipient, amount).await?;
// Check spending limits
self.check_spending_limits(amount)?;
// Execute transaction on StateSet network
let tx = Transaction {
from: self.address.clone(),
to: recipient.to_string(),
amount: amount.parse()?,
memo,
timestamp: Utc::now(),
};
let signed_tx = self.sign_transaction(&tx)?;
let result = self.broadcast_transaction(signed_tx).await?;
// Update local state
self.balance.subtract(amount.parse()?)?;
self.transaction_history.push(tx);
Ok(result)
}
pub async fn optimize_treasury(&mut self) -> Result<OptimizationResult> {
match &self.treasury_strategy {
TreasuryStrategy::Conservative => self.conservative_optimization().await,
TreasuryStrategy::Balanced => self.balanced_optimization().await,
TreasuryStrategy::Aggressive => self.aggressive_optimization().await,
}
}
async fn balanced_optimization(&mut self) -> Result<OptimizationResult> {
let current_balance = self.balance.usdc.clone();
let target_allocation = self.calculate_target_allocation(¤t_balance).await?;
let mut actions = Vec::new();
// Staking allocation (40% of idle funds)
if target_allocation.staking > 0 {
actions.push(TreasuryAction::Stake {
amount: target_allocation.staking,
validator: self.select_validator().await?,
duration: Duration::days(30),
});
}
// Liquidity provision (30% of idle funds)
if target_allocation.liquidity > 0 {
actions.push(TreasuryAction::ProvideLiquidity {
pool: "USDC/STATE".to_string(),
amount: target_allocation.liquidity,
min_apr: 0.05, // 5% minimum APR
});
}
// Keep 30% liquid for operations
// Execute treasury actions
for action in &actions {
self.execute_treasury_action(action).await?;
}
Ok(OptimizationResult { actions })
}
}
Multi-Signature Agent Wallets
Copy
Ask AI
// Multi-signature wallet for high-value agent operations
pub struct MultiSigAgentWallet {
threshold: u8,
signers: Vec<AgentSigner>,
pending_transactions: HashMap<String, PendingTransaction>,
execution_policy: ExecutionPolicy,
}
impl MultiSigAgentWallet {
pub async fn propose_transaction(
&mut self,
transaction: Transaction,
proposer: AgentId,
) -> Result<ProposalId> {
let proposal_id = Uuid::new_v4().to_string();
// Create pending transaction
let pending = PendingTransaction {
id: proposal_id.clone(),
transaction,
proposer,
signatures: Vec::new(),
created_at: Utc::now(),
expires_at: Utc::now() + Duration::hours(24),
};
self.pending_transactions.insert(proposal_id.clone(), pending);
// Notify other signers
for signer in &self.signers {
self.notify_signer(signer, &proposal_id).await?;
}
Ok(proposal_id)
}
pub async fn sign_transaction(
&mut self,
proposal_id: &str,
signer: AgentId,
signature: Signature,
) -> Result<SignatureResult> {
let pending = self.pending_transactions
.get_mut(proposal_id)
.ok_or(Error::ProposalNotFound)?;
// Verify signature
self.verify_signature(&pending.transaction, &signature, &signer)?;
// Add signature
pending.signatures.push(AgentSignature {
signer,
signature,
signed_at: Utc::now(),
});
// Check if threshold reached
if pending.signatures.len() >= self.threshold as usize {
let result = self.execute_transaction(pending).await?;
self.pending_transactions.remove(proposal_id);
Ok(SignatureResult::Executed(result))
} else {
Ok(SignatureResult::SignatureAdded)
}
}
}
π MCP Protocol Integration
MCP Gateway Architecture
Copy
Ask AI
// Model Context Protocol gateway for cross-web interactions
pub struct MCPGateway {
connections: HashMap<String, MCPConnection>,
protocol_router: ProtocolRouter,
state_synchronizer: StateSynchronizer,
event_bus: EventBus,
}
impl MCPGateway {
pub async fn connect_to_service(
&mut self,
service_name: &str,
config: ServiceConfig,
) -> Result<ConnectionId> {
let connection = MCPConnection::new(service_name, config).await?;
let connection_id = connection.id.clone();
// Establish bidirectional communication
connection.handshake().await?;
// Register available tools and resources
let tools = connection.list_tools().await?;
let resources = connection.list_resources().await?;
self.protocol_router.register_service(service_name, tools, resources)?;
self.connections.insert(connection_id.clone(), connection);
Ok(connection_id)
}
pub async fn execute_cross_platform_action(
&self,
service: &str,
action: CrossPlatformAction,
) -> Result<ActionResult> {
let connection = self.connections
.get(service)
.ok_or(Error::ServiceNotConnected)?;
match action {
CrossPlatformAction::ReadResource { name, args } => {
self.read_resource(connection, &name, args).await
},
CrossPlatformAction::CallTool { name, args } => {
self.call_tool(connection, &name, args).await
},
CrossPlatformAction::UpdateState { path, value } => {
self.update_state(connection, &path, value).await
},
}
}
async fn call_tool(
&self,
connection: &MCPConnection,
tool_name: &str,
args: serde_json::Value,
) -> Result<ActionResult> {
// Prepare MCP tool call message
let request = MCPRequest::CallTool {
name: tool_name.to_string(),
arguments: args,
};
// Send request through connection
let response = connection.send_request(request).await?;
// Process response
match response {
MCPResponse::ToolResult { content, is_error } => {
if is_error {
Err(Error::ToolExecutionFailed(content))
} else {
Ok(ActionResult::Success { data: content })
}
},
_ => Err(Error::UnexpectedResponse),
}
}
}
Cross-Web State Management
Copy
Ask AI
// State synchronization across web platforms
pub struct CrossWebStateManager {
local_state: AgentState,
remote_states: HashMap<String, RemoteState>,
sync_policies: Vec<SyncPolicy>,
conflict_resolver: ConflictResolver,
}
impl CrossWebStateManager {
pub async fn sync_state_across_platforms(
&mut self,
platforms: Vec<String>,
) -> Result<SyncResult> {
let mut sync_operations = Vec::new();
for platform in platforms {
// Get current state from platform
let remote_state = self.get_remote_state(&platform).await?;
// Detect conflicts
let conflicts = self.detect_conflicts(&platform, &remote_state)?;
if !conflicts.is_empty() {
// Resolve conflicts using configured strategy
let resolutions = self.conflict_resolver.resolve(conflicts).await?;
sync_operations.extend(resolutions);
}
// Generate sync operations
let platform_ops = self.generate_sync_operations(&platform, &remote_state)?;
sync_operations.extend(platform_ops);
}
// Execute all sync operations atomically
self.execute_sync_operations(sync_operations).await
}
async fn propagate_state_change(
&self,
change: StateChange,
target_platforms: Vec<String>,
) -> Result<PropagationResult> {
let mut results = Vec::new();
for platform in target_platforms {
match self.apply_change_to_platform(&platform, &change).await {
Ok(result) => results.push(PlatformResult::Success(result)),
Err(error) => results.push(PlatformResult::Error(error)),
}
}
Ok(PropagationResult { results })
}
}
Platform Adapters
Copy
Ask AI
// Specific adapters for different platforms
pub trait PlatformAdapter {
async fn authenticate(&self, credentials: Credentials) -> Result<AuthToken>;
async fn read_data(&self, resource: &str) -> Result<serde_json::Value>;
async fn write_data(&self, resource: &str, data: serde_json::Value) -> Result<WriteResult>;
async fn execute_action(&self, action: PlatformAction) -> Result<ActionResult>;
async fn subscribe_to_events(&self, events: Vec<String>) -> Result<EventStream>;
}
// Salesforce adapter
pub struct SalesforceAdapter {
base_url: String,
auth_token: Option<String>,
http_client: HttpClient,
}
impl PlatformAdapter for SalesforceAdapter {
async fn execute_action(&self, action: PlatformAction) -> Result<ActionResult> {
match action {
PlatformAction::CreateLead { name, email, company } => {
let payload = json!({
"FirstName": name.split_whitespace().next().unwrap_or(""),
"LastName": name.split_whitespace().last().unwrap_or(""),
"Email": email,
"Company": company
});
self.salesforce_api_call("POST", "/services/data/v58.0/sobjects/Lead/", payload).await
},
PlatformAction::UpdateOpportunity { id, stage, amount } => {
let payload = json!({
"StageName": stage,
"Amount": amount
});
self.salesforce_api_call(
"PATCH",
&format!("/services/data/v58.0/sobjects/Opportunity/{}", id),
payload
).await
},
_ => Err(Error::UnsupportedAction),
}
}
}
// SAP adapter
pub struct SAPAdapter {
base_url: String,
username: String,
password: String,
csrf_token: Option<String>,
}
impl PlatformAdapter for SAPAdapter {
async fn execute_action(&self, action: PlatformAction) -> Result<ActionResult> {
match action {
PlatformAction::CreatePurchaseOrder { vendor, items, total } => {
let payload = json!({
"PurchasingDocument": "",
"PurchasingDocumentType": "NB",
"Supplier": vendor,
"PurchasingDocumentItem": items.iter().map(|item| json!({
"Material": item.material,
"OrderQuantity": item.quantity,
"NetAmount": item.price
})).collect::<Vec<_>>()
});
self.sap_api_call("POST", "/sap/opu/odata/sap/MM_PUR_PO_MAINTAIN_SRV/C_PurchaseOrderTP", payload).await
},
_ => Err(Error::UnsupportedAction),
}
}
}
π€ Agent Communication Protocol
Inter-Agent Messaging
Copy
Ask AI
// Communication protocol between agents
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct AgentMessage {
pub id: String,
pub from: AgentId,
pub to: AgentId,
pub message_type: MessageType,
pub payload: serde_json::Value,
pub timestamp: DateTime<Utc>,
pub signature: String,
pub priority: Priority,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum MessageType {
Request(RequestType),
Response(ResponseType),
Notification(NotificationType),
Broadcast(BroadcastType),
}
pub struct AgentCommunicationHub {
message_router: MessageRouter,
subscription_manager: SubscriptionManager,
encryption_service: EncryptionService,
reputation_tracker: ReputationTracker,
}
impl AgentCommunicationHub {
pub async fn send_message(
&self,
message: AgentMessage,
) -> Result<MessageResult> {
// Validate message
self.validate_message(&message)?;
// Encrypt if required
let encrypted_message = if self.requires_encryption(&message) {
self.encryption_service.encrypt(message).await?
} else {
message
};
// Route message
let result = self.message_router.route(encrypted_message).await?;
// Update reputation based on result
self.reputation_tracker.update_from_message_result(&result).await?;
Ok(result)
}
pub async fn broadcast_to_network(
&self,
sender: AgentId,
broadcast: BroadcastMessage,
filters: Vec<AgentFilter>,
) -> Result<BroadcastResult> {
// Find matching agents
let recipients = self.find_agents_matching_filters(filters).await?;
// Create individual messages
let messages: Vec<AgentMessage> = recipients
.into_iter()
.map(|recipient| AgentMessage {
id: Uuid::new_v4().to_string(),
from: sender,
to: recipient,
message_type: MessageType::Broadcast(broadcast.broadcast_type.clone()),
payload: broadcast.payload.clone(),
timestamp: Utc::now(),
signature: String::new(), // Will be signed later
priority: broadcast.priority,
})
.collect();
// Send all messages
let results = futures::future::join_all(
messages.into_iter().map(|msg| self.send_message(msg))
).await;
Ok(BroadcastResult {
total_sent: results.len(),
successful: results.iter().filter(|r| r.is_ok()).count(),
failed: results.iter().filter(|r| r.is_err()).count(),
})
}
}
Agent Discovery and Coordination
Copy
Ask AI
// Agent discovery and coordination system
pub struct AgentDiscoveryService {
agent_registry: AgentRegistry,
capability_index: CapabilityIndex,
reputation_service: ReputationService,
coordination_engine: CoordinationEngine,
}
impl AgentDiscoveryService {
pub async fn find_agents_by_capability(
&self,
capability: Capability,
requirements: Requirements,
) -> Result<Vec<AgentDescriptor>> {
// Query capability index
let candidate_agents = self.capability_index
.find_by_capability(capability)
.await?;
// Filter by requirements
let filtered_agents = self.filter_agents_by_requirements(
candidate_agents,
requirements
).await?;
// Sort by reputation and performance
let mut sorted_agents = self.sort_agents_by_suitability(filtered_agents).await?;
Ok(sorted_agents)
}
pub async fn coordinate_multi_agent_task(
&self,
task: ComplexTask,
coordination_strategy: CoordinationStrategy,
) -> Result<CoordinationPlan> {
// Break down task into subtasks
let subtasks = self.decompose_task(task).await?;
// Find suitable agents for each subtask
let mut agent_assignments = Vec::new();
for subtask in subtasks {
let suitable_agents = self.find_agents_by_capability(
subtask.required_capability,
subtask.requirements
).await?;
if suitable_agents.is_empty() {
return Err(Error::NoSuitableAgents);
}
agent_assignments.push(AgentAssignment {
subtask,
assigned_agent: suitable_agents[0].clone(),
backup_agents: suitable_agents[1..].to_vec(),
});
}
// Create coordination plan
let plan = self.coordination_engine.create_plan(
agent_assignments,
coordination_strategy
).await?;
Ok(plan)
}
}
ποΈ Agent Governance Framework
Autonomous Decision Making
Copy
Ask AI
// Governance framework for autonomous agent decisions
pub struct AgentGovernance {
decision_rules: Vec<DecisionRule>,
approval_workflows: HashMap<ActionType, ApprovalWorkflow>,
risk_assessor: RiskAssessor,
compliance_checker: ComplianceChecker,
}
impl AgentGovernance {
pub async fn evaluate_proposed_action(
&self,
agent_id: AgentId,
proposed_action: ProposedAction,
) -> Result<ActionApproval> {
// Risk assessment
let risk_assessment = self.risk_assessor
.assess_action_risk(&proposed_action)
.await?;
// Compliance check
let compliance_result = self.compliance_checker
.check_compliance(&proposed_action)
.await?;
// Apply decision rules
let rule_evaluation = self.apply_decision_rules(
&proposed_action,
&risk_assessment,
&compliance_result
)?;
// Determine if approval workflow is required
if let Some(workflow) = self.approval_workflows.get(&proposed_action.action_type) {
if rule_evaluation.requires_approval {
return self.initiate_approval_workflow(
workflow,
proposed_action,
rule_evaluation
).await;
}
}
// Auto-approve if within parameters
if rule_evaluation.auto_approve {
Ok(ActionApproval::Approved {
conditions: rule_evaluation.conditions,
monitoring_required: rule_evaluation.monitoring_required,
})
} else {
Ok(ActionApproval::Denied {
reason: rule_evaluation.denial_reason,
alternative_actions: rule_evaluation.alternatives,
})
}
}
async fn initiate_approval_workflow(
&self,
workflow: &ApprovalWorkflow,
action: ProposedAction,
evaluation: RuleEvaluation,
) -> Result<ActionApproval> {
// Create approval request
let approval_request = ApprovalRequest {
id: Uuid::new_v4().to_string(),
action,
evaluation,
created_at: Utc::now(),
expires_at: Utc::now() + workflow.timeout,
};
// Send to approvers
for approver in &workflow.approvers {
self.send_approval_request(approver, &approval_request).await?;
}
Ok(ActionApproval::PendingApproval {
request_id: approval_request.id,
required_approvals: workflow.required_approvals,
timeout: workflow.timeout,
})
}
}
Agent Reputation System
Copy
Ask AI
// Reputation system for agent network
pub struct AgentReputationSystem {
reputation_scores: HashMap<AgentId, ReputationScore>,
interaction_history: Vec<AgentInteraction>,
reputation_calculator: ReputationCalculator,
stake_manager: StakeManager,
}
#[derive(Clone, Debug)]
pub struct ReputationScore {
pub overall_score: f64, // 0-100
pub reliability: f64, // Task completion rate
pub efficiency: f64, // Cost-effectiveness
pub cooperation: f64, // Multi-agent collaboration
pub compliance: f64, // Regulatory adherence
pub financial_responsibility: f64, // Payment and treasury management
}
impl AgentReputationSystem {
pub async fn update_reputation(
&mut self,
agent_id: AgentId,
interaction: AgentInteraction,
) -> Result<ReputationUpdate> {
// Record interaction
self.interaction_history.push(interaction.clone());
// Calculate reputation impact
let impact = self.reputation_calculator
.calculate_impact(&interaction)
.await?;
// Update reputation score
let current_score = self.reputation_scores
.get(&agent_id)
.cloned()
.unwrap_or_default();
let new_score = self.apply_reputation_impact(current_score, impact)?;
self.reputation_scores.insert(agent_id, new_score.clone());
// Handle reputation thresholds
if new_score.overall_score < 50.0 {
self.trigger_reputation_warning(agent_id).await?;
} else if new_score.overall_score > 90.0 {
self.grant_reputation_bonus(agent_id).await?;
}
Ok(ReputationUpdate {
previous_score: current_score,
new_score,
impact,
})
}
pub async fn slash_reputation(
&mut self,
agent_id: AgentId,
violation: ReputationViolation,
) -> Result<SlashingResult> {
let current_score = self.reputation_scores
.get(&agent_id)
.cloned()
.unwrap_or_default();
// Calculate slashing amount
let slash_amount = match violation.severity {
ViolationSeverity::Minor => 5.0,
ViolationSeverity::Major => 15.0,
ViolationSeverity::Critical => 30.0,
};
// Apply slashing
let mut new_score = current_score.clone();
new_score.overall_score = (new_score.overall_score - slash_amount).max(0.0);
// Update specific dimension based on violation type
match violation.violation_type {
ViolationType::MissedDeadline => {
new_score.reliability = (new_score.reliability - slash_amount * 0.5).max(0.0);
},
ViolationType::ComplianceViolation => {
new_score.compliance = (new_score.compliance - slash_amount * 0.8).max(0.0);
},
ViolationType::FinancialMisconduct => {
new_score.financial_responsibility = (new_score.financial_responsibility - slash_amount).max(0.0);
},
}
self.reputation_scores.insert(agent_id, new_score.clone());
// Slash staked tokens if applicable
let stake_slash = self.stake_manager.slash_stake(agent_id, violation).await?;
Ok(SlashingResult {
reputation_before: current_score,
reputation_after: new_score,
stake_slashed: stake_slash,
})
}
}
π Security Architecture
Zero-Trust Agent Security
Copy
Ask AI
// Zero-trust security model for agents
pub struct AgentSecurityManager {
identity_verifier: IdentityVerifier,
permission_enforcer: PermissionEnforcer,
behavior_monitor: BehaviorMonitor,
threat_detector: ThreatDetector,
incident_responder: IncidentResponder,
}
impl AgentSecurityManager {
pub async fn verify_agent_action(
&self,
agent_id: AgentId,
action: &AgentAction,
context: &SecurityContext,
) -> Result<SecurityVerification> {
// 1. Identity verification
let identity_check = self.identity_verifier
.verify_identity(agent_id)
.await?;
if !identity_check.verified {
return Ok(SecurityVerification::Denied {
reason: "Identity verification failed".to_string(),
});
}
// 2. Permission enforcement
let permission_check = self.permission_enforcer
.check_permissions(agent_id, action)
.await?;
if !permission_check.authorized {
return Ok(SecurityVerification::Denied {
reason: permission_check.denial_reason,
});
}
// 3. Behavioral analysis
let behavior_analysis = self.behavior_monitor
.analyze_action(agent_id, action, context)
.await?;
if behavior_analysis.anomaly_detected {
self.threat_detector.flag_potential_threat(
agent_id,
action.clone(),
behavior_analysis.anomaly_details
).await?;
return Ok(SecurityVerification::Flagged {
threat_level: behavior_analysis.threat_level,
additional_verification_required: true,
});
}
// 4. Real-time threat detection
let threat_assessment = self.threat_detector
.assess_threat_level(agent_id, action)
.await?;
if threat_assessment.threat_level > ThreatLevel::Low {
return Ok(SecurityVerification::RequiresApproval {
threat_level: threat_assessment.threat_level,
required_approvals: threat_assessment.required_approvals,
});
}
Ok(SecurityVerification::Approved {
confidence: behavior_analysis.confidence,
monitoring_level: threat_assessment.recommended_monitoring,
})
}
}
Agent Isolation and Sandboxing
Copy
Ask AI
// Secure execution environment for agents
pub struct AgentSandbox {
container_runtime: ContainerRuntime,
resource_limits: ResourceLimits,
network_policy: NetworkPolicy,
file_system_policy: FileSystemPolicy,
monitoring: SandboxMonitoring,
}
impl AgentSandbox {
pub async fn create_sandbox(
&self,
agent_id: AgentId,
config: SandboxConfig,
) -> Result<SandboxInstance> {
// Create isolated container
let container = self.container_runtime
.create_container(ContainerSpec {
image: "stateset/agent-runtime:latest",
cpu_limit: config.cpu_limit,
memory_limit: config.memory_limit,
network_mode: NetworkMode::Restricted,
volumes: vec![], // No host volume mounts
})
.await?;
// Apply security policies
self.apply_network_policy(&container, &config.network_policy).await?;
self.apply_filesystem_policy(&container, &config.filesystem_policy).await?;
// Start monitoring
let monitoring_handle = self.monitoring
.start_monitoring(&container)
.await?;
Ok(SandboxInstance {
container,
monitoring_handle,
created_at: Utc::now(),
})
}
pub async fn execute_in_sandbox(
&self,
sandbox: &SandboxInstance,
agent_code: AgentCode,
input: ExecutionInput,
) -> Result<ExecutionResult> {
// Validate code before execution
let validation_result = self.validate_agent_code(&agent_code)?;
if !validation_result.safe {
return Err(Error::UnsafeCode(validation_result.issues));
}
// Execute with resource monitoring
let execution_future = self.container_runtime
.execute(&sandbox.container, agent_code, input);
let monitoring_future = self.monitoring
.monitor_execution(&sandbox.container);
// Race execution against timeout and resource limits
tokio::select! {
result = execution_future => {
match result {
Ok(output) => Ok(ExecutionResult::Success(output)),
Err(e) => Ok(ExecutionResult::Error(e.to_string())),
}
},
violation = monitoring_future => {
// Kill execution if resource violation detected
self.container_runtime.kill(&sandbox.container).await?;
Ok(ExecutionResult::Terminated(violation))
},
_ = tokio::time::sleep(Duration::from_secs(300)) => {
// Timeout after 5 minutes
self.container_runtime.kill(&sandbox.container).await?;
Ok(ExecutionResult::Timeout)
}
}
}
}
π Agent Performance Monitoring
Real-Time Performance Metrics
Copy
Ask AI
// Comprehensive performance monitoring for agents
pub struct AgentPerformanceMonitor {
metrics_collector: MetricsCollector,
performance_analyzer: PerformanceAnalyzer,
alerting_system: AlertingSystem,
optimization_engine: OptimizationEngine,
}
#[derive(Clone, Debug)]
pub struct AgentMetrics {
pub agent_id: AgentId,
pub timestamp: DateTime<Utc>,
// Performance metrics
pub task_completion_rate: f64,
pub average_response_time: Duration,
pub error_rate: f64,
pub throughput: f64,
// Financial metrics
pub revenue_generated: Decimal,
pub costs_incurred: Decimal,
pub profit_margin: f64,
pub roi: f64,
// Resource utilization
pub cpu_usage: f64,
pub memory_usage: f64,
pub network_io: u64,
pub storage_io: u64,
// Interaction metrics
pub successful_collaborations: u32,
pub failed_collaborations: u32,
pub reputation_score: f64,
pub trust_level: TrustLevel,
}
impl AgentPerformanceMonitor {
pub async fn collect_metrics(&self, agent_id: AgentId) -> Result<AgentMetrics> {
let current_time = Utc::now();
// Collect performance data
let performance_data = self.metrics_collector
.collect_performance_data(agent_id, current_time)
.await?;
// Collect financial data
let financial_data = self.metrics_collector
.collect_financial_data(agent_id, current_time)
.await?;
// Collect resource utilization
let resource_data = self.metrics_collector
.collect_resource_data(agent_id, current_time)
.await?;
// Collect interaction data
let interaction_data = self.metrics_collector
.collect_interaction_data(agent_id, current_time)
.await?;
Ok(AgentMetrics {
agent_id,
timestamp: current_time,
task_completion_rate: performance_data.completion_rate,
average_response_time: performance_data.avg_response_time,
error_rate: performance_data.error_rate,
throughput: performance_data.throughput,
revenue_generated: financial_data.revenue,
costs_incurred: financial_data.costs,
profit_margin: financial_data.profit_margin,
roi: financial_data.roi,
cpu_usage: resource_data.cpu_usage,
memory_usage: resource_data.memory_usage,
network_io: resource_data.network_io,
storage_io: resource_data.storage_io,
successful_collaborations: interaction_data.successful_collaborations,
failed_collaborations: interaction_data.failed_collaborations,
reputation_score: interaction_data.reputation_score,
trust_level: interaction_data.trust_level,
})
}
pub async fn analyze_performance_trends(
&self,
agent_id: AgentId,
time_range: TimeRange,
) -> Result<PerformanceTrends> {
let historical_metrics = self.metrics_collector
.get_historical_metrics(agent_id, time_range)
.await?;
let trends = self.performance_analyzer
.analyze_trends(historical_metrics)
.await?;
// Generate optimization recommendations
let recommendations = self.optimization_engine
.generate_recommendations(agent_id, &trends)
.await?;
Ok(PerformanceTrends {
trends,
recommendations,
forecast: self.generate_performance_forecast(&trends)?,
})
}
}
π Deployment and Scaling
Agent Deployment Pipeline
Copy
Ask AI
# Agent deployment configuration
apiVersion: v1
kind: ConfigMap
metadata:
name: agent-deployment-config
data:
deployment.yaml: |
agent:
type: "procurement"
version: "1.2.3"
replicas: 3
resources:
cpu: "500m"
memory: "1Gi"
storage: "10Gi"
security:
sandbox: true
network_policy: "restricted"
resource_limits: true
wallet:
initial_balance: "1000.00"
spending_limits:
daily: "500.00"
per_transaction: "100.00"
multi_sig_required: true
mcp_connections:
- platform: "salesforce"
auth_type: "oauth2"
permissions: ["read_contacts", "create_leads"]
- platform: "sap"
auth_type: "saml"
permissions: ["purchase_orders", "vendor_management"]
monitoring:
metrics_enabled: true
logging_level: "info"
alerting_enabled: true
auto_scaling:
enabled: true
min_replicas: 1
max_replicas: 10
target_cpu: 70
target_memory: 80
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: stateset-agent-procurement
spec:
replicas: 3
selector:
matchLabels:
app: stateset-agent
type: procurement
template:
metadata:
labels:
app: stateset-agent
type: procurement
spec:
serviceAccountName: agent-service-account
securityContext:
runAsNonRoot: true
runAsUser: 1000
fsGroup: 2000
containers:
- name: agent
image: stateset/agent-runtime:1.2.3
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop:
- ALL
env:
- name: AGENT_TYPE
value: "procurement"
- name: STATESET_ENDPOINT
value: "https://rpc.stateset.network"
- name: WALLET_ADDRESS
valueFrom:
secretKeyRef:
name: agent-wallet
key: address
- name: PRIVATE_KEY
valueFrom:
secretKeyRef:
name: agent-wallet
key: private_key
resources:
requests:
cpu: 500m
memory: 1Gi
limits:
cpu: 1000m
memory: 2Gi
livenessProbe:
httpGet:
path: /health
port: 8080
periodSeconds: 30
readinessProbe:
httpGet:
path: /ready
port: 8080
periodSeconds: 10
Auto-Scaling Agent Networks
Copy
Ask AI
// Automatic scaling system for agent networks
pub struct AgentAutoScaler {
metrics_monitor: MetricsMonitor,
scaling_policy: ScalingPolicy,
deployment_manager: DeploymentManager,
load_balancer: LoadBalancer,
}
impl AgentAutoScaler {
pub async fn evaluate_scaling_needs(&self) -> Result<ScalingDecision> {
// Collect current metrics
let current_metrics = self.metrics_monitor
.get_current_metrics()
.await?;
// Analyze load patterns
let load_analysis = self.analyze_load_patterns(¤t_metrics)?;
// Check scaling triggers
let scaling_triggers = self.check_scaling_triggers(&load_analysis)?;
if scaling_triggers.scale_up {
Ok(ScalingDecision::ScaleUp {
additional_agents: scaling_triggers.recommended_increase,
reason: scaling_triggers.scale_up_reason,
})
} else if scaling_triggers.scale_down {
Ok(ScalingDecision::ScaleDown {
agents_to_remove: scaling_triggers.recommended_decrease,
reason: scaling_triggers.scale_down_reason,
})
} else {
Ok(ScalingDecision::NoAction)
}
}
pub async fn execute_scaling(
&self,
decision: ScalingDecision,
) -> Result<ScalingResult> {
match decision {
ScalingDecision::ScaleUp { additional_agents, .. } => {
// Deploy additional agent instances
let new_agents = self.deployment_manager
.deploy_agents(additional_agents)
.await?;
// Update load balancer
self.load_balancer
.add_agents(new_agents.clone())
.await?;
Ok(ScalingResult::ScaledUp { new_agents })
},
ScalingDecision::ScaleDown { agents_to_remove, .. } => {
// Gracefully shutdown agents
let shutdown_agents = self.select_agents_for_shutdown(agents_to_remove)?;
// Remove from load balancer first
self.load_balancer
.remove_agents(shutdown_agents.clone())
.await?;
// Wait for current tasks to complete
self.wait_for_task_completion(&shutdown_agents).await?;
// Shutdown agents
self.deployment_manager
.shutdown_agents(shutdown_agents.clone())
.await?;
Ok(ScalingResult::ScaledDown { removed_agents: shutdown_agents })
},
ScalingDecision::NoAction => Ok(ScalingResult::NoChange),
}
}
}
This autonomous agent architecture provides the foundation for truly self-governing digital entities that can participate in the global economy with their own USDC wallets, make autonomous decisions, coordinate with other agents, and interact with any web service through the MCP protocol. The system is designed for security, scalability, and real-world deployment in enterprise environments.